WEAK EXPLICIT MATCHING FOR LEVEL ZERO DISCRETE SERIES OF UNIT GROUPS OF p-ADIC SIMPLE ALGEBRAS

نویسنده

  • Allan J. Silberger
چکیده

Let F be a p-adic local eld and let A i be the unit group of a central simple F-algebra A i of reduced degree n > 1 (i = 1; 2). Let R 2 (A i) denote the set of irreducible discrete series representations of A i. The \Abstract Matching Theorem" asserts the existence of a bijection, the \Jacquet-Langlands" map,A 2) which, up to known sign, preserves character values for regular elliptic elements. This paper addresses the question of explicitly describing the map JL, but only for \level zero" representations. We prove that the restriction) is a bijection of level zero discrete series (Proposition 3.2) and we give a parameterization of the set of unramiied twist classes of level zero discrete series which does not depend upon the algebra A i and is invariant under JL A 2 ;A 1 (Theorem 4.1). x0. Introduction. This paper is the third of a series of papers ((SZ], GSZ]) in which the authors are working toward an explicit description of the Jacquet-Langlands correspondence for the level zero case. For the proofs of this paper we depend upon the Abstract Matching Theorem (AMT) (see x0.3), so our results are of the nature, \If AMT is true, then the correspondence has to be this correspondence." x0.1 Some Structure and Notation. This section will be used throughout and is presented here for easy reference. Our notation will be consistent with that of GSZ]. Let F be a p-adic local eld and n > 1 an integer. For d 1 let D := D d denote a central F-division algebra of index d and let A := M m (D) a central simple F-algebra of reduced degree n := dm. Let O := O D denote the ring of integers of D, $ := $ D a prime element of O such that $ d = $ F , and let p := p D = $O be the prime ideal of O. We x a maximal unramiied eld extension F d D which is normalized by $. The residual eld k D := O=p is of order q d and may be identiied with k d , the residual eld of F d. More generally, for`1 we write F ` for an unramiied extension of F of degreè and k ` for a nite eld extension of k of degreè. We write X (k `) …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

Caractérisation des paramètres d'Arthur‎, ‎une remarque

‎In The endoscopic classification of representations‎‎, ‎J‎. ‎Arthur has proved the Langlands' classification for discrete series of p-adic classical groups‎. ‎This uses endoscopy and twisted endoscopy‎. ‎In this very short note‎, ‎we remark that the normalization ‎$‎rm‎grave{a}‎$‎ la Langlands-Shahidi of the intertwining operators‎, ‎allows to avoid endoscopy‎. ‎This is based on the intertwini...

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000